
CSE 416 Section 2 Team Purple: Jenny Bao, Aaron Li, Jonathan Ng, Angelo Panopio
Executive Summary

Existing applications such as https://www.mapchart.net/ already provide a lot of the
services we would like to offer in our application. However, existing applications do not have a
dedicated section for community on their websites. Instead, it seems to be the case that users
export their created maps and then share images on social media such as Reddit.

Our application aims to bridge that gap by allowing users to more easily share their map
creations with each other in order to allow for easy editing and building upon each others’ ideas.
Furthermore, community interaction (e.g. comments, likes, etc) can provide feedback and help
other users better visualize their data.

Objectives
● Foster a community of cartographers through publication and sharing
● Empower map enthusiasts with customizable and personalized map editing tools
● Offer learning opportunities for researchers, authors, and educators

Strategies/Philosophies
● Agile Development:

○ We will develop our application in a feature-by-feature process, with a group of 2
people working on any given feature at a time.

○ If no features are currently listed on the “to-do” list, this will be a good sign for a
team meeting on what to do next.

● Code Review:
○ Changes to master must be approved by another member

● User-Centric Design:
○ Prioritize user experience and usability in the application’s design

● Security:
○ Implement robust security measures to protect user data and privacy

Constraints
● Map Graphic Types:
1. Bin Map (coloring) - Template that creates a blank colored world map with borders drawn

between countries. Allows users to fill in regions with specific colors, or change what
type level of administrative borders are drawn.

https://www.mapchart.net/

2. Heat Map (gradient coloring) - Similar to bin map, but allows users to provide region data
such that they can be colored based on that data.

3. Subway - Template that overlays a set of vectors onto a blank region (e.g. NYC)
representing a subway system.

4. Landmark - Template that creates a map with labeled points of interest (e.g. restaurants
in a city, historical landmarks, buildings of significance, etc.)

5. Cadastral - Template that creates a map with borders around property / buildings in a
given region.

● Device Compatibility:
○ Web application optimized for desktop use only and many not provide an optimal

experience on mobile devices.
Actors

● Registered Users:
○ View/Fork/Comment/Export existing published maps
○ Create/edit/delete/Export owned maps

● Guest Users:
○ View/Export public maps
○ Sign up for an account

● Administrators:
○ Manage user accounts, maps, comments

Services
● Account Management:

○ Secure account creation and login
○ Authentication and authorization
○ “Forgot Password” mechanism

● Map Graphics Creation:
○ Upload SHP/DBF, GeoJSON, or KML files
○ Fork existing maps on the forum

● Map Graphics Editing:
○ Create new map from template
○ View and navigate maps
○ Attach custom properties to map regions
○ Undo/redo changes
○ Decorate maps with texts, colors, and legends

● Map Graphics Exporting:
○ Export map graphics as PNG, JPG, or JSON format

■ Zip file containing geojson and our own proprietary json files
■ Allow users to import previously exported maps

● Map Classification & Search
○ Classify maps with properties/tags
○ Search functionality based on properties for public maps

● Community Interactions:
○ Public commenting feature on maps
○ Like button on maps

Use Case # UI Context Use Case Name

2.1 Sign In Screen Create Account

2.2 Sign In Screen Login to Account

2.3 Any Screen Logout of Account

2.4 Home Screen Use as Guest

2.5 Sign In Screen Recover Password

2.6 My Maps Screen View Own Map

2.7 My Maps Screen Upload Map

2.8 Edit Maps Screen Edit Map

2.9 My Maps or Edit Maps Screen Publish Map

2.10 My Maps Screen Delete Map

2.11 Home Screen View All Posts (Threads & Maps)

2.12 Home Screen View Maps Only

2.13 Home Screen Search Maps

2.14 Post Screen Fork Existing Map

2.15 Post Screen Comment on Post

2.16 Post Screen Delete Comment

2.17 Home Screen Delete Post

2.18 Post Screen Like Post

2.19 Post Screen Export Map

Use Case # 2.1

Use Case Name Create Account

Actors Guest

Story The user arrives on the home screen and wants to start making
maps. The user clicks the “Log In” button on the top right and a
modal with log in options will appear. Since the user does not have
an account, they click the “Sign Up” button at the bottom of the
modal. The user can then enter their username, email, and
password in the fields on the modal and press “Create Account”.
This will add the user to the database and automatically log them in
and redirected back to the home screen.

Scenario David Lin is a user that would like to make a map. David arrives on
the homepage after entering the website on his browser. He clicks
on “Log In” which brings up the log in modal. Since he doesn’t
already have an account, he clicks on the “Sign Up” button. He
enters “david” in the username field, “david@david.com” in the
email field, and “david123” in the password field. He confirms his
password and clicks “Create Account” and is now logged in and
back on the home screen.

Exceptions A user cannot create an account using an email address that is
already associated with another account. In the case that this
happens, the application should show styled feedback with an
appropriate message. The same can be applied if improper
passwords are provided. The same is true for usernames as they
should also be unique.

Use Case # 2.2

Use Case Name Login to Account

Actors Guest

Story The user arrives on the home screen and wants to start making
maps. The user clicks the “Log In” button on the top right and a
modal with log in options will pop up. Since the user has an
account, they click on the “Log In” button on the bottom of the
modal. The user can then enter their username and password in the
fields on the modal and press “Log In”. This will log in the user and
redirect them.

Scenario David Lin is a user that would like to make a map. David arrives on
the homepage after entering the website on his browser. He clicks
on “Log In” which brings up the log in modal where he enters his
username and password. He then clicks “Log In” and is redirected
to the home page.

Exceptions A user cannot log in if they provide incorrect credentials. In this
case, a pop up will alert the user of the error.

Use Case # 2.3

Use Case Name Logout of Account

Actors Logged-In User, Admin

Story The user is logged into the application. The user thinks about
wanting to log out. The user puts his hands on the mouse and
moves the cursor to the drop-down menu. The user selects the
“Logout” button located in the drop-down menu and clicks it. The
user is then logged out and redirected to the home screen.

Scenario David is logged into the application. David thinks about wanting to
log out. David puts his hands on the mouse and moves the cursor
to the drop-down menu. David selects the “Logout” button located in
the drop-down menu and clicks it. David is then logged out and
redirected to the home screen.

Exceptions A guest cannot see the logout button because they are not logged
in.

Use Case # 2.4

Use Case Name Use as Guest

Actors Guest

Story The user arrives on the home screen and does not want to login.
The user can view all public posts on the home screen and the view
maps only screen. The user can search for maps made by others
by their properties or names. They can view posts, view comments
and export maps. The user cannot make maps, so they cannot
navigate to the my maps page and the fork maps button is disabled.
They cannot like or comment on posts so those buttons will not
show up.

Scenario David is on the home screen and wants to use the site but doesn’t
have an account and doesn’t feel like making an account. David is
fine with only viewing public posts. David clicks on the search bar
and enters “Antarctica” in the text field and hits enter. This brings up
the list of maps that includes “Antarctica” in the title. David sees one
called “AWESOME map of Antarctica” and clicks on the expand
button to view the rest of the map. David reads through the first 3
comments but wants to see more so he clicks the view more button.

Exceptions We should make sure that guests can’t navigate to screens that
they don’t have access to and don’t see buttons that they cannot
use. Make sure we have a foolproof design to ensure these
conditions.

Use Case # 2.5

Use Case Name Recover Password

Actors Guest

Story The user lands on the home page and is browsing the public maps.
The user sees an interesting map and wants to leave a comment.
The user enters the username with an incorrect password. A
pop-up comes up indicating that the password is wrong. After many
attempts, the user decides to click on the “Recover Password”
button. The email field replaces the password field. The user enters
their username and email and clicks on “Send.” The user receives
an email from Cartistry prompting them to reset their password.
After clicking on the reset password link they are redirected to a
password reset screen. The user enters their new desired password
and confirms.

Scenario David lands on the home page and is browsing the public maps.
David sees an interesting map and wants to leave a comment.
David enters the username with an incorrect password. A pop-up
comes up indicating that the password is wrong. After many
attempts, David decides to click on the “Recover Password” button.
David enters his username and email and clicks on “Send.” David
receives an email from Cartistry prompting them to reset their
password. After clicking on the reset password link they are
redirected to a password reset screen. David enters their new
desired password and confirms.

Exceptions Only a guest has the option to recover their password. This is only
available on the login screen. If the credentials entered do not
match what is on the database, an error message pops up.

Use Case # 2.6

Use Case Name View Own Map

Actors Logged-In User, Admin

Story The user is logged in and clicks on the avatar icon on the top-right,
which will display a dropdown, and they click on “My Maps”. This
will navigate them to the my maps screen where they can see all
the maps they’ve already made.

Scenario David is logged in and wants to look at his maps. He clicks on his
avatar icon to click the “My Maps” button. After navigating to the my
maps screen, he sees that his maps are sorted by recently opened.
He wants to sort his maps alphabetically, so he clicks on the SORT
BY button and selects the “By Name (A-Z)” criteria. Now he can
view his maps sorted alphabetically by title.

Exceptions The user might not have nay maps, but only the container listing all
the maps should be empty, everything else should render the same
(create map button, sort by, etc.)

Use Case # 2.7

Use Case Name Upload Map

Actors Logged-In User, Admin

Story The user is logged in and is on the My Maps screen. The user
wants to create a new map. The user clicks on the upload icon,
which opens a modal for the user to select the map file they want to
upload. Upon confirming the upload, a new thumbnail appears on
the My Maps screen. Clicking this icon will allow the user to begin
editing their map

Scenario David navigates to the My Maps screen and wants to create a new
map. He previously downloaded a file called “EU.json” containing
geojson data for all the administrative borders corresponding to the
countries in Europe. He clicks the upload button, chooses his file to
upload, then confirms the upload. He then clicks on the generated
thumbnail to begin editing his map

Exceptions .kml, .json, and .zip files (containing .shp files) are the only types
allowed.

Use Case # 2.8

Use Case Name Edit Map

Actors Logged-In User, Admin

Story The user is logged in and is on the My Maps screen. The user
clicks on one of their existing non-published maps. This transitions
the user to a new screen containing the user’s map and the UI
controls for editing. The user can click on the map to perform
editing actions (depending on the template, different actions are
possible), as well as zoom and pan around with the mouse button.
When the user is done, they can either click the “Save Changes”
button to confirm their edits, or “Publish” in order to create a new
post with the map. This follows the same procedure as creating a
new post, where the user can check off what they want to tag their
post with.

Scenario David navigates to the My Maps screen and clicks on one of his
unpublished maps titled “GDP of European nations”. The map
defaults to being centered at North America, so he uses his mouse
to pan over to Europe. He then clicks on an area of the map
containing the bordered region corresponding to Germany. Since
the map was originally templated as a heatmap, he can edit the
associated GDP data for Germany via the modal that popped up.
Once done, he clicks on “Save Changes” to confirm his edits to the
map.

Exceptions The undo and redo transaction stack should be reset on each open
of the map.

Use Case # 2.9

Use Case Name Publish Map

Actors Logged-In User, Admin

Story The user is logged in and is viewing a map they have created which
they are ready to publish. The user clicks on the “File” options in the
header which opens a drop-down menu. The user selects the
“Publish” button located in the menu. After clicking on the button, a
modal appears prompting the user to provide a “title” and text
description” for the post. After the user provides the information, the
user clicks the “Submit” button. The user is then redirected to the
home page where they can view their newly published post.

Note that a user is able to publish the same map multiple times.
Doing so would allow the users to publish a map, perform edits on
it, and then publish again, creating a new post.

Scenario David is ready to publish his map. He navigates to the My Maps
screen and clicks on his unpublished map titled “GDP of European
nations”. This opens the map editor screen where he has access to
the “Publish” button. He clicks on the button, which opens a modal
prompting him to submit more information for the post he is about to
create. He enters in the “title” and “text description” for the post and
clicks “Submit”. This creates a new post on the site, allowing other
users to view his map.

Exceptions If a user if unhappy with their map, they can fork it to create a
duplicate and then delete the published version.

Use Case # 2.10

Use Case Name Delete Map

Actors Logged In User

Story The user navigates to the “My Maps” screen and finds a map they
no longer wish to be there. Upon hovering the thumbnail of the
image of the map, a trashcan icon appears. Upon clicking the
trashcan, a modal pops up, asking the user for confirmation if they
want the map to be deleted. Upon clicking yes, the map is deleted
from the user’s account and will no longer appear on the MyMaps
screen.

Scenario David navigates to “My Maps” and sees one of his old maps “Best
Restaurants in Flushing”. He wants to delete it because his friends
have made fun of his food opinions. He hovers over the map icon,
clicks the trashcan icon that appears, and then confirms deletion.

Exceptions Deleting a map will not delete the post(s) associated from all the
time(s) that map was published. The user can click the cancel
button, but once a map is deleted it is permanent.

Use Case # 2.11

Use Case Name View All Posts (Threads & Maps)

Actors Logged In User, Guest, Admin

Story The actor’s browser loads the correct URL for the web application.
The home page loads where the default view upon loading the page
is the view of all posts (threads & maps). Thumbnails, titles, brief
descriptions and a 3 dot menu for other options are provided for
each post The actor can navigate through all the posts and filter
them by name, tag, date and click on any post they wish to view to
see its full content.

Scenario David has loaded the web application on his desktop browser
where he can view all posts (threads & maps). David can navigate
through all the posts, filter them by preset categories and can click
on any post to see its full content.

Exceptions The menu associated with each post contains varying options
depending on the current actor. Logged-In users and Admins are
presented with delete/edit options.

Use Case # 2.12

Use Case Name View Maps Only

Actors Guest, Logged-In User, Admin

Story The user is on the home screen and viewing all posts, but they want
to only look at maps. The user navigates to the right part of the
screen where the filters are and checks the “Maps Only” checkbox.
They click apply, and now are viewing only posts with maps.

Scenario David is scrolling on the home screen and is getting annoyed with
the multiple general discussion posts since he’s here to see some
cool maps. He moves his mouse to the right of the screen and
clicks the checkbox for “Maps Only”. Now only maps appear on the
screen and David is very satisfied.

Exceptions To go back to the View All screen, the user can either click the logo
(home icon) or uncheck “Maps Only” and hit apply.

Use Case # 2.13

Use Case Name Search Maps

Actors Guest, Logged-In User, Admin

Story The user can type into the search bar and submit a query to filter all
posts on the site. A drop down menu in the search bar specifies
what type of query it will be, either by post title or by tags. Queries
for post title will return all posts that contain the query in the title.

If a user chooses to search by tags, they must choose from a
pre-existing set of tags. Upon selecting the tags, the search will
filter all posts containing any of the tags, sorted by whichever posts
contain the most tags.

Scenario David is looking for maps related to the video game Valorant. He is
on the search bar and chooses to search posts by tag. He selects
the following tags: “videogames”, “esports”, “geek”. His search
returns a total of 10 posts, the top of which contains all tags, and
the bottom of which only contain 1 tag.

Exceptions

Use Case # 2.14

Use Case Name Fork Existing Map

Actors Logged-In User, Admin

Story The user has the option to take an existing post containing a
published map and fork it. By forking it, they essentially import the
geoJSON associated with the post into their own account. It is
equivalent to having the geoJSON data already downloaded and
creating a new map by the “Upload Map” functionality.

Upon forking, the user’s MyMaps screen will contain the forked
map.

Scenario David sees a post containing a map titled “Best Restaurants in
Flushing”. He likes the author’s opinion, but wants to add some
suggestions of his own. Instead of starting from scratch, David
clicks on the fork button for the map which creates a copy of the
map in his account. At this point, David can edit the map to his
liking, adding his own favorite restaurants to it.

Exceptions If the user already forked a map with the same name, a number
should be added to the map title to make it unique.

Use Case # 2.15

Use Case Name Comment on Post

Actors Logged-In User, Admin

Story The user sees an interesting post. The post has an interesting
conversation going on in the thread. The user wants to join in on the
conversation. The user clicks on the text box in the comment
section and begins typing “I love McKIllaGorilla.” The user then
clicks the post/submit button for the comment. The comment is then
posted and visible to other users.

Scenario David sees an interesting post. The post has an interesting
conversation going on in the thread. David wants to join in on the
conversation. David clicks on the text box in the comment section
and begins typing “I love McKIllaGorilla.” David then clicks the
post/submit button for the comment. The comment is then posted
and visible to other users.

Exceptions Guests cannot post comments.

Use Case # 2.16

Use Case Name Delete Comment

Actors Logged-In User, Admin

Story The admin sees an inappropriate comment regarding
McKillaGorilla. As a good admin, the admin moves the cursor to the
delete button. The admin clicks on the button and the comment is
then deleted.

Scenario David sees an inappropriate comment regarding McKIllaGorilla. As
a good admin, David moves the cursor to the delete button. David
clicks on the button and the comment is then deleted. David then
sees one of his own comments that he does not like. He proceeds
to click on the delete comment button and the comment is
discarded.

Exceptions You cannot delete other users’ comments unless you are an admin.

Use Case # 2.17

Use Case Name Delete Post

Actors Logged-In User, Admin

Story The user just made a post. The user does not like the post they just
made. The user wants to delete the post they just made. The user
moves the cursor to the delete post button. The user clicks the
button. The post is then discarded and no longer visible to other
users.

Scenario David just made a post. David does not like the post they just made.
David wants to delete the post they just made. David moves the
cursor to the delete post button. David clicks the button. The post is
then discarded and no longer visible to other users.

Exceptions You cannot delete other users’ posts unless you are an admin.

Use Case # 2.18

Use Case Name Like/Unlike Post

Actors Logged-In User, Admin

Story The user is on the home screen and sees a post they like. They
expand the post to see the rest of it and see the like icon on the
bottom with the number of likes next to it. They click the like icon
and the number of likes increases.

Scenario David is scrolling on the home screen and sees a map of Antarctica
that intrigues him. He expands it to see the rest of the map and
finds it very nice. He looks at the bottom right and sees that this
map already has 103 likes next to an icon of an outlined heart.
David navigates his mouse to the like icon and clicks it, making the
like count 104 and making the icon a filled-in heart. However, he
realizes that the author accidentally spelled Antarctica as “Antartica”
and finds it unforgivable. So, he clicks on the filled-in heart button to
unlike which makes the like count go back down to 103 and makes
the icon back to an outlined heart.

Exceptions The user should only be able to like once, as clicking the button
again should unlike the post. If other users are liking the post, the
number should only change on reload. The user can only see the
count dynamically change for their own like.

Use Case # 2.19

Use Case Name Export Map

Actors Logged-In User, Guest User, Admin

Story The user is on the home screen and sees a map they like. They
expand the post to see the rest of the map and the export icon on
the bottom left. They click the button and a modal appears to let
them choose how to download the map (PNG, JPEG, or JSON).
Once they select one, the user can click the “Export Map” button
and a download will begin.

Scenario David is scrolling on the home screen and sees a map of Antarctica
that intrigues him. He clicks on the expand button to see the rest of
the map and likes it very much. He wants to send it to his friends so
he clicks on the export button on the bottom left of the post. A pop
up appears, and David clicks on the dropdown to choose the ‘PNG’
option. He clicks “Export Map” and the download begins.

Exceptions The user can clicks cancel to cancel the action, so a download will
not begin.

Use Case # 2.20

Use Case Name View Profile

Actors Logged-In User, Admin

Story

Scenario

Exceptions

Use Case # 2.21

Use Case Name Reset Password

Actors

Story

Scenario

Exceptions

Cartistry User Interface View Listing - Team Purple

View # Name Description

0 Profile Icon To Login/Register Navigates to Login/Register Modal

1 Login Modal Login to Account

2 Register Modal Create Account

3 Clicking Profile Icon as Logged In
User

Logged In User can navigate to “My
Maps”, “Reset Password” or “Logout”

4 Home Screen Contains Top Posts, containing both
text and map posts. Users can use
the search bar to search for posts by
title.

4.1 Home Screen Maps Only Filter Users can filter top posts to filter out
text only posts

4.2 Home Screen Sort Users can sort posts by newest,
oldest, and most liked.

4.3 Home Screen Filter By Tag Users can filter posts to be ones only
containing tags they select.

4.4 Home Screen Like Post Users can like any post they haven’t
already liked via the home screen.

5 Reset Password Modal Logged In User Can Reset Password

6 My Maps Screen View of logged in user’s maps after
clicking on profile icon and “My Maps”

6.1 My Maps Screen
(Creating Map Menu)

My Maps screen view with “Create A
Map” menu open with options “Use
default” and “Import”

6.2 My Maps Screen
(Import Map Popup)

Modal popup after clicking “Import”
from “Create A Map” menu

6.3 My Maps Screen
(Sort By Menu)

My Maps screen view with “Sort By”
Menu expanded with options “Name”,
“Edit/Publish/Create Date”

6.4 My Maps Screen
(Map Card Menu)

My Maps screen view with “Map Card”
menu expanded with options “Export”,
“Publish”, “Fork”, “Rename”, “Delete”

6.5 My Maps Screen
(Delete Confirm Popup)

Modal popup after clicking “Delete”
from “Map Card” menu

6.6 My Maps Screen
(Publish Confirm Popup)

Modal popup after clicking “Publish”
from “Map Card” menu

7 Edit Maps Screen Users can edit their map graphics
through this screen and the UI
controls.

7.1 Edit Maps Screen
Pan Select

Users can enter Pan mode where
they can click and drag to view around
the map.

7.2 Edit Maps Screen
Color Mode

Users can enter Color Mode where
clicking on a bordered region on the
map will color it accordingly.

7.3 Edit Maps Screen
Pin Mode

Users can enter Pin Mode where
clicking on the map drops a point
which they can label and assign a
color

7.4 Edit Maps Screen
Color Selection Menu Open

Users can select a color to be used in
color mode.

7.5 Edit Maps Screen
Menu

Users can choose to save, export,
publish, fork, or delete their map

8 Create Post Screen Default view after clicking create post
button on home screen

8.1 Create Post Screen
(Added Attachment and Tag)

Create a Post screen containing
optional attachments. If the User
came here via Publishing a map, their
map will be added as an image
attachment.

9 Post Screen Contains full post title description,
comments and attachments. Users
always have the option to like and
comment. If map data is attached,
users can fork or export it.

9.1 Post Screen
Comment Menu

Users can edit or delete their own
comments on a post.

0

1

2

3

4

4.1

4.2

4.3

4.4

5

6

6.1

6.2

6.3

6.4

6.5

6.6

7

7.1

7.2

7.3

7.4

7.5

8

8.1

9

9.1

Cartistry Data Model

DATA DICTIONARY BEGINS ON PAGE 3.

User
const userSchema = new Schema(

{

userName: { type:String, required: true, unique: true},

email: { type: String, required: true, unique: true},

passwordHash: { type: String, required: true },

posts: [{type: ObjectId, ref: 'Post'}],

mapsMetdadata: [{type: ObjectId, ref: 'MapMetadata'}],

likedPosts: [{type: ObjectId, ref:'Post'}],

untitledCount: {type:Number, default: 0},

duplicateCount: {type:Number, default: 0},

isAdmin: {type: Boolean, default: false},

timeOfLastPasswordResetRequest: {type: Date}

},

{ timestamps: true },

)

Post
const postSchema = new Schema(

{

title: { type: String, required: true },

owner: { type: ObjectId, ref:'User', required: true },

ownerUserName: {type: String, required: true},

thumbnail: {

imageData: Buffer,

contentType: String,

},

comments: { type: [{

authorUserName: String,

text: String,

publishDate: {type: Date},

}], default: []},

likes: {type: Number, default: 0},

publishDate: {type: Date},

},

{ timestamps: true },

)

Map Metadata
const mapMetadataSchema = new Schema(

{

title: { type: String, required: true },

owner: { type: ObjectId, ref:'User', required: true },

ownerUserName: {type: String, required: true},

thumbnail: {

imageData: Buffer,

contentType: String,

required: true

},

lastSaved: {type: Date},

ownerFavorited: {type: Boolean, default: false},

forks: {type: Number, default: 0},

mapData: {type: ObjectId, ref:'MapData', required: true},

isPrivated: {type: Boolean, default: true},

},

{ timestamps: true },

)

Map Data

const mapDataSchema = new Schema(

{

mapMetadata: {type: ObjectId, ref:'MapMetadata', required: true},

geoJSON: {type: Object, required: true},

proprietaryJSON: {

templateType: {type: String, required: true},

legend: {

title: {type: String},

keyValueLabels: {type: [{

key: {type: String},

value: {type: String}

}]}

},

gradientData: {

primaryColor: {type: Number},

minScale: {type: Number},

maxScale: {type: Number},

sections: {type: Number},

}

}

}

)

Data Dictionary
This Data Dictionary has been sorted
lexicographically first by Schema Name, and
then by fields and subcategories within
those fields.

Map Data

FIELDNAME DESCRIPTION CONSTRAINTS

geoJSON JSON used to represent
the collection of features
corresponding to the
map data that will be
rendered in the editor.

Backend server must verify
that this is valid geoJSON
before storing it as map data.
Required

mapMetadata ObjectId of the document
that contains the
metadata about this map
(e.g. title,
ownerUserName, etc)

ObjectId. Required.

proprietaryJSON JSON used to represent
information necessary

for loading all other
components of the map
editor aside from the
map itself, e.g. the
legend.

proprietaryJSON.gradientData Object that corresponds
to the information
required to display the
gradient on the map and
on the legend labels.

proprietaryJSON.gradientData.ma
xScale

Number that
corresponds to the
maximum value for the
gradient’s scale.

Can be any valid float value,
except for “-inf” or “+inf

proprietaryJSON.gradientData.mi
nScale

Number that
corresponds to the
minimum value for the
gradient’s scale.

Can be any valid float value,
except for “-inf” or “+inf”

proprietaryJSON.gradientData.pri
maryColor

Number that represents
the 32 bit color value for
the primary color of the
gradient

Number must represent a
valid color.

proprietaryJSON.gradientData.se
ctions

Number that
corresponds to how
many sections the
gradient will be divided
into for the legend. In
other words, how many
shades of colors the
gradient will be divided
into.

Integer greater than 0

proprietaryJSON.legend Object that contains
information about the
map legend

proprietaryJSON.legend.keyValue
Labels

Array of Objects that
corresponds to the labels
of the legend

proprietaryJSON.legend.keyValue
Labels.key

String that corresponds
to the key of a given
label (e.g. color)

proprietaryJSON.legend.keyValue
Labels.value

String that corresponds
to the value of a given

label

proprietaryJSON.legend.title String that corresponds
to the title of the map
legend

proprietaryJSON.templateType String used to represent
the type of template this
map originates from.

String. Required. Can only
take on the following possible
values: “bin”, “heat”,
“subway”, “cadastral”,
“landmark”

Map Metadata

forks Number used to represent
the amount of times this map
has been forked by other
users.

Integer value greater than or
equal to 0

isPrivated Boolean value representing
whether or not this map is
private and available for other
users to view.

Boolean

lastSaved Date corresponding to when
the last time the MapData
was saved via the save
button in the Map editor.

Is a number representing the
date and time in milliseconds
since the Unix epoch
(January 1, 1970, 00:00:00
UTC)

mapData ObjectId corresponding to the
MapData containing
geoJSON and other data
used to render the map
graphics.

ObjectId. Required

owner The ObjectId corresponding
to the owner of the post,
which is a User.

ObjectId. Required

ownerFavorited Boolean value to represent
whether or not the owner has
favorited the map
corresponding to this
metadata. Used for filtering
favorited cards in the

Boolean

MyMaps page.

ownerUserName String value corresponding to
the userName of the owner of
the post.

String. Required

thumbnail.contentType String that specifies what
type of imageData the
thumbnail is

“image/jpeg” and “image/png”
are the only valid values.

thumbnail.imageData Buffer of bytes corresponding
to image data.

Bytes must be a valid png or
jpeg image.

title String value corresponding to
the title of the map

String. Required. Must be
unique in that user’s
collection (e.g. Untitled0,
Untitled1)

Post

comments Array of objects
corresponding to comments

Initially empty

comments[i].authorUserName String value corresponding
to the userName of the
author of the comment

String

comments[i].text String value corresponding
to the text contents of the
comment

String

likes Number value corresponding
to the number of likes on the
post

Integer greater than or equal
to 0

owner The ObjectId corresponding
to the owner of the post,
which is a User.

ObjectId. Required

ownerUserName String value corresponding
to the userName of the
owner of the post.

String. Required

publishDate Date corresponding to the
time when this post was
published and made publicly
available to other users.

Is a number representing the
date and time in milliseconds
since the Unix epoch
(January 1, 1970, 00:00:00
UTC)

thumbnail.contentType String that specifies what
type of imageData the
thumbnail is

“image/jpeg” and “image/png”
are the only valid values.

thumbnail.imageData Buffer of bytes
corresponding to image
data.

Bytes must be a valid png or
jpeg image.

title String value corresponding
to the title of the post.

String. Required.

User

email Unique email specified by the
user during account creation.
Used for the purpose for
logging in and recovering
forgotten passwords.

String. Required. Cannot
create a User with an email
that already exists on another
account

isAdmin Boolean value referring to
whether or not the user is an
Admin user.

Can only be set manually, not
through a public API
endpoint.

likedPosts Array of ObjectIds
corresponding to posts that
the user has liked.

Can contain Objectids from
posts of any user.

mapsMetdadata Array of ObjectIds
corresponding to map
metadata that the user has
created. Usage will mainly be
for displaying
thumbnails/cards for the
user’s “MyMaps” page.

Array of ObjectId

passwordHash The hash of the user’s String. Required. Must only

password that will be used for
verification against the
provided password whenever
the user attempts to login.

be generated and stored on
the backend server

posts Array of ObjectIds
corresponding to posts that
the user has published.

Must only contain ObjectIds
from posts that the user has
created.

timeOfLastPasswordResetRe
quest

Date representing the last
time a user has requested a
password reset. Used to
check for whether or not the
password reset link sent to
the user’s email has expired.

Is a number representing the
date and time in milliseconds
since the Unix epoch
(January 1, 1970, 00:00:00
UTC)

userName Unique name specified by the
user during account creation.
Will be displayed on public
posts/maps.

String. Required. Cannot
create a User with a
userName that already exists
on another account

CARTISTRY SOFTWARE MODEL

Similar Problems

Mapchart | mapchart.net

Overview:
MapChart.net is a web-based application tailored for crafting custom geographical charts. By
delving into MapChart.net's features and capabilities, we can derive actionable implementation
strategies for our map editing web app.

Key Features and Implementation Strategies:

Basic Map Creation:

● Rationale: Users select and color countries or states using a chosen palette.
● Implementation: Develop a responsive color-picking tool and integrate it with the app's

geographical database. Use vector graphics to ensure smooth rendering of countries
and states when colored.

Legend Customization:

● Rationale: Legends are auto-generated based on user color choices.
● Implementation: Implement a dynamic legend generator that reacts to user color

choices.
Advanced Interactivity:

● Rationale: Context menus appear upon right-clicking, offering customization options.
● Implementation: Design a context-sensitive menu system that presents options based on

the current state and selection on the map.
Keyboard Shortcuts and Efficiency Tools:

● Rationale: MapChart uses keyboard shortcuts like undo or color removal.
● Implementation: Embed a keyboard event listener and create a shortcut repository,

allowing users to edit efficiently.
Save and Load Functionality:

● Rationale: Work can be saved as a local .txt file and later uploaded for continuation.
● Implementation: Design a serialization process to save map configurations into custom

json files and a deserialization method to load and reconstruct saved maps.
Zooming and Focusing:

● Rationale: Users can zoom in/out and navigate using both the mouse and keyboard.
● Implementation: Integrate a zoom library (like D3.js) and develop custom navigation

controls for precise zooming and panning.
Pattern Usage:

● Rationale: Patterns can be chosen for nuanced data representation.
● Implementation: Extend the color-picking tool to include pattern selections. Store pattern

graphics as SVGs for scalability.
Excel Integration:

● Rationale: For extensive maps, an Excel tool aids in fast configuration creation.
● Implementation: Design an Excel parser to read configuration files, converting them to

the app's data format for quick bulk editing.
Conclusion:
MapChart.net's rich feature set provides a blueprint from which our map editing web app can
benefit. Adapting these into tailored implementations will ensure a robust and user-friendly
mapping platform.

Playlister | CSE 316 FALL 2022
MERN stack Web App

Playlister, built to create, manage, and share music playlists, its intricate functionalities and
user-focused design provide essential lessons for our map editing application. By understanding
Playlister's successful methodologies, we aim to enhance the development of our map tool,
drawing parallels where appropriate and adapting best practices.

Dynamic User Interface:

● Rationale: The Playlister uses an AppBanner for interactive menu options and modal
pop-ups (CurrentModal). Similarly, our map editing app benefits from an intuitive and
dynamic interface for seamless user interaction with map elements.

● Implementation: Incorporate a toolbar in the map editor, reminiscent of the Edit Toolbar,
to house tools for actions such as drawing routes, placing markers, and adjusting map
layers.

Contextual Actions:

● Rationale: Playlister manages playlist content through GlobalStoreActionType that
defines distinct actions (e.g., CREATE, DELETE). In a parallel fashion, our map editor
requires defined actions to manage its map elements.

● Implementation: Introduce actions like ADD_MARKER, DELETE_ROUTE, ZOOM_IN,
and others. Structuring these actions this way facilitates the management and triggering
of functionalities based on user inputs.

Advanced User Interactions:

● Rationale: Playlister incorporates the jTSPS system for transactional actions, offering
users the ability to undo or redo actions, enriching the user experience and minimizing
errors.

● Implementation: Embed a transaction system in the map editor, allowing users to undo a
recently placed marker or redo a removed route, proving essential for intricate map
editing tasks.

Server Interactions and Data Management:

● Rationale: In Playlister, the client communicates with the server using the
GlobalStoreHttpRequestApi to retrieve or modify playlist data. In a similar vein, efficient
server interactions are needed in our map editor to fetch or store map data.

● Implementation: Design APIs that facilitate users in saving their current map state,
retrieving saved maps, or updating existing ones, ensuring robust communication
between the client and server.

User Authentication and Management:

● Rationale: Playlister effectively manages user authentication via AppBanner and
AuthContextProvider. For our map editing app, user accounts are essential to store and
manage personalized maps.

● Implementation: Integrate authentication protocols into the map editor. This integration
should allow users to establish accounts, preserve their maps, and retrieve them from
any device.

By evaluating the Playlister application's features and structures, we've garnered valuable
insights and best practices that will inform the development and enhancement of our map
editing web app.

Fake Stack Overflow | CSE 316 FALL 2023
MERN stack Web App

In a previous project, a Stack Overflow clone, we developed a community-driven platform where
users could post, edit, and interact with questions and answers. This project shares several
similarities with the current web app project focused on map editing and community sharing.
The following aspects from the Stack Overflow clone can be utilized in the current project:

Community Engagement:

● The Stack Overflow clone included features for user profiles, content posting, and
community interaction. These elements can be leveraged for the current project to
facilitate community sharing and engagement with maps.

Content Management:

● The project allowed users to create, edit, and share questions and answers. This content
management system can be adapted to suit the needs of the map editing application,
enabling users to create, edit, and share maps.

User Authentication and Profiles:

● User authentication and profiles were integral to the Stack Overflow clone, tracking each
user's content and interactions. This system can be reused for the current project to
manage user-created maps and interactions.

Search and Filter:

● A search and filter functionality was implemented to help users find specific questions
and answers. This functionality can be adapted and incorporated into the map editing
application, allowing users to easily search and filter through maps.

Complete Technology Set

Front-end APIs

axios Used to send HTTP requests and receive
HTTP responses to/from our back-end server

jsondiffpatch Used to calculate the difference between the
geoJSON after edits in order to have efficient
saving of users’ map data

jstps Used to keep track of the users transactions
while performing map editing in order to
enable undo/redo

jszip Used to send uploaded mapData to backend
server as a zipfile, as well as receive zipped
data from the backend server.

react Used to render our front-end application view

react-leaflet Used to render the users’ geoJSON map data
in the application, as well as providing the api
for the user to interact with the map (e.g. via

clicking)

react-router Used to abstract different sections of our
single page application into multiple routes
specified by url path.

turfjs Library used for map graphics editing and
creating geoJSON data corresponding to
lines, points, polygons, etc.

Back-end APIs

adm-zip Used to receive zipped map data from the
client during a map upload

archiver Used to send zipped mapdata to the client
during a map export

bcryptjs Used for user registration and authentication,
providing capabilities such as generating
password hashes and comparing hashes.

body-parser Used to parse the body of an HTTP request
into a javascript object

cookie-parser Used to parse the cookie sent in an HTTP
request into a javascript object

cors Used to control the cors policy for access to
routes on our backend server

dotenv Used to parse .env files stored on our
backend server, usually used to store private
information such as API keys for mongoDB

express Used as the framework for building the routes
and controllers for our backend server

jsondiffpatch Used for saving the edited version for a
users’ geoJSON by applying the diff data
provided by the user to their geoJSON

jsonwebtoken Used to verify the user has logged in by
reauthenticating them via verifying their given
json web token.

mapbox/togeojson Used to parse kml files in order to convert
them to geoJSON

mongoose Used for communicating and maintaining a
connection with our backend database,
mongoDB. Also used to create schemas for
the data stored in the database, as well as
having the model API used to retrieve,
update, and delete documents from the
database.

multer Middleware responsible for handling
multipart/form-data, which mainly deals with
image uploads for Posts

shpjs Used to parse zipped shapefiles in order to
convert them to geoJSON

xmldom Used for parsing .kml files sent by the client
so that mapbox/togeojson can convert it to
geoJSON

Training Verification

Angelo Panopio

Background:
● Angelo successfully created a clone of StackOverflow in the spring semester of 2023

during the class CSE 316 . This experience has equipped him with hands-on knowledge
about React and related technologies.

Deployment & Work Demonstration:
● Angelo's StackOverflow clone is a testament to his proficiency with React and related

technologies. You can view his implementation at the following GitHub repository:
https://github.com/angelopanopio/cse316spr23.

Technologies Used:
● React.js for the frontend UI components.
● Node.js and Express.js for backend implementation.
● MongoDB for database operations.

Jonathan Ng

https://github.com/angelopanopio/cse316spr23

Background:
● Jonathan successfully created the Playlister application in Fall 2022 semester, giving him

the experience required for building a MERN stack application. Furthermore, during his
internship in summer 2023 at Capital One, he got hands-on experience in deploying an
API to AWS Lambda used for load generation and performance testing other internal
company applications.

Deployment & Work Demonstration:
https://github.com/JWaibong/Playlister-final

Technologies Used:
● React.js for the frontend UI components
● Express for backend server implementation
● MongoDB for database

Aaron Li

Background:
● Aaron created the Playlister application in Fall 2022 semester, giving him the experience

required for building a MERN stack application. This along with other projects has given
him hands-on experience. He has an in-depth understanding and knowledge of HTML
and CSS which allows him to work quickly.

● wowie
Deployment & Work Demonstration:
https://github.com/aaronli03/final-project

Technologies Used:
● React.js for the frontend UI components
● Express for backend server implementation
● MongoDB for database

Jenny Bao

Background:
● Jenny successfully created the Playlister application in Fall 2022 semester, giving her

the experience required for building a MERN stack application. Furthermore, during her
internship in Summer 2023 at Citi, she got hands-on experience with creating features
using React while being on the frontend team. Also, she has experience with using an
Express backend with a React frontend during her Summer 2022 internship where she
worked fullstack.

Deployment & Work Demonstration:
https://github.com/blueskies0038/cse316-playlister-project

https://github.com/JWaibong/Playlister-final
https://github.com/aaronli03/final-project
https://github.com/blueskies0038/cse316-playlister-project

Technologies Used:
● React.js for the frontend UI components
● Express for backend server implementation
● MongoDB for database

UML DIAGRAMS BEGIN ON NEXT PAGE
Note: Auth Diagram remains mostly unchanged from CSE 316 Playlister

App

?

NavBar HomeWrapper

HomeScreen

Button
Create Post

Button
Maps Only

Input
Search Bar

Post

Tags

Text
Title

Image
Preview

Button
Like

Text
Author

Text
Time Since

Post

Button
Comment

ProfileIcon
Button

LogoType

Button
Tag

Button
Register

Button
Login

Button
Logout

Button
Reset

Password

Button
My Posts

Button
My Maps

More Options

Button
Delete

Button
Edit

Button
Fork

Button
Export

LoginModal

Text
Title

Button
CloseIcon

Button
Forgot

Password

Button
Login

Input
Email

Input
Password

RegisterModal

Text
Title

Button
CloseIcon

Input
Username

Button
Register

Input
Email

Input
Password

Input
Confirm

Password

ErrorModal

Text
Title

Button
CloseIcon

Text
Error

Message

Button
Close

PasswordResetWrapper

PasswordResetScreen

ResetPassword

Text
Title

Input
Password

Input
Confirm

Password

Button
Reset

Modal

Text
Title

Button
CloseIcon

Text
 Message

Button
Close

ResetPasswordModal

Text
Title

Button
CloseIcon

Input
Old

Password

Button
Reset

Input
Password

Input
Confirm

Password

PostWrapper

PostScreen

Post

Text
Title

Text
Username

Text
Time Since

Post

Button
Fork

Text
Body

Button
Like

Button
Comment

Input
Comment

Button
Publish

Comment

Comments

Comment

Button
Profile

Text
Username

Text
Time Since

Post

Text
Body

More Options

Button
Delete

Button
Edit

Image
Preview

CreatePostWrapper

CreatePostScreen

CreatePost

Input
Title

Input
Body

Button
Attachment

Button
Post

Button
Tag

Tags

Input
SearchBar

Button
Tag

Image
Preview

Text
Tag

MyMapsWrapper

MyMapsScreen

Input
Search Bar

CreateMap

SortBy

Button
Bin Map

Button
Heat Map

Button
Subway Map

Button
Cadastral

Map

Button
Landmark

Map

Button
Name

Button
Edit Date

Button
Publish Date

Button
Create Date

Map

Image
Preview

Text
Title

Text
Last Opened

More Options

Button
Rename

Button
Delete

Button
Publish

Button
Fork

Button
Export

SortBy

Button
Newest

Button
Oldest

Button
Liked

ImportModal

Text
Title

Button
CloseIcon

Input
 File

Button
Import

ConfirmModal

Text
Title

Button
Cancel

Button
Confirm

EditMapWrapper

EditMapScreen

MapContainer
Map

ToolBox

Button
Pan

Button
Fill

Button
Point

Button
Gradient

Button
Line

Button
Polygon

Text
Label

Input
Value

Input
Color

Selector

Button
Landmark

Legend

Image
Preview

Text
Label

Button
Undo

Button
Redo

MyPostsWrapper

MyPostsScreen

Text
Title

Input
Search Bar

Post

Tags

Text
Title

Image
Preview

Button
Like

Text
Author

Text
Time Since

Post

Button
Comment

Button
Tag

More Options

Button
Delete

Button
Edit

Button
Fork

Button
Export

Text
Tag

SortBy

Button
Newest

Button
Oldest

Button
Liked

Server

HTTP Request

HTTP Response

Post

 title: string;
 owner: Types.ObjectId | UserDocument;
 ownerUserName: string;
 thumbnail: Image;
 comments: Comment[];
 images: Image[];
 likes: number;
 forks: number;
 tags: string[];
 publishDate: Date;

interface Comment {
 authorUserName: string;
 comment: string;
 publishDate: Date;
}
interface Image {
 imageData: Buffer,
 contentType: string,
}

PostsRouter
/posts-api

router.get('/posts/search-title/:title', PostsController.searchPostsByTitle)
router.get('/posts/search-tags', PostsController.searchPostsByTags)
router.get('/posts/user/:userId', PostsController.getPostsOwnedByUser)
router.get('/posts/:id', PostsController.getPost)
router.get('/posts/most-recent', PostsController.getMostRecentPosts)
router.get('/posts/most-liked', PostsController.getMostLikedPosts)

router.post('/posts ', auth.verify, PostsController.createPost)

router.put('/posts/:id', auth.verify, PostsController.editPost)
router.put('/posts/:id/likes', auth.verify, PostsController.updatePostLikes)
router.put('/posts/:id/edit-comment', auth.verify,
PostsController.editComment)
router.put('/posts/:id/comment', auth.verify,
PostsController.commentOnPost)

router.delete('/posts/:id', auth.verify, PostsController.deletePost)
router.delete('/posts/:id/comment', auth.verify,
PostsController.deleteComment)

PostsController

searchPostsByTitle(req, res) {
 method: GET
 route: /posts-api/posts/search-title/:title
 response: {
 status: 200
 // all posts info except for comments
 data: { posts: [{
 _id: String,
 title: String,
 ownerUserName: String,
 ownerId: String,
 thumbnail: { imageData: Buffer,
contentType:String},
 likes: Number,
 forks: Number,
 tags: [String],
 mapMetadata: String
 publishDate: Date
 }]
 }
 // no search results for request
 response: {
 status: 404
 data: {errorMessage: String}
 }
}

searchPostsByTags(req, res) {
 method: GET
 route: /posts-api/posts/search-tags
 response: {
 status: 200
 // all posts info except for comments
 data: { posts: [{
 _id: String,
 title: String,
 ownerUserName: String,
 ownerId: String,
 thumbnail: { imageData: Buffer,
contentType:String},
 likes: Number,
 forks: Number,
 tags: [String],
 mapMetadata: String
 publishDate: Date
 }]
 }
 // no search results for request
 response: {
 status: 404
 data: {errorMessage: String}
 }
}

getPostsOwnedByUser(req, res) {
 method: GET
 route: /posts-api/posts/user/:userId
 response: {
 status: 200
 // all posts info except for comments
 data: { posts: [{
 _id: String,
 title: String,
 ownerUserName: String,
 ownerId: String,
 thumbnail: { imageData: Buffer,
contentType:String},
 likes: Number,
 forks: Number,
 tags: [String],
 mapMetadata: String
 publishDate: Date
 }]
 }
 // no search results for request
 response: {
 status: 404
 data: {errorMessage: String}
 }
}

getPost(req,res) {
 method: GET
 route: /posts-api/posts/:id
 response: {
 status: 200
 data: { post: Post }
 }
 // no search results for request
 response: {
 status: 404
 data: {errorMessage: String}
 }
}

getMostRecentPosts(req, res) {
 method: GET
 route: /posts-api/posts/most-recent
 response: {
 status: 200
 // all posts info except for comments
 data: { posts: [{
 _id: String,
 title: String,
 ownerUserName: String,
 ownerId: String,
 thumbnail: { imageData: Buffer,
contentType:String},
 likes: Number,
 forks: Number,
 tags: [String],
 mapMetadata: String
 publishDate: Date
 }]
 }
 // no search results for request
 response: {
 status: 404
 data: {errorMessage: String}
 }
}

getMostLikedPost(req,res) {
 method: GET
 route: /posts-api/posts/most-liked
 response: {
 status: 200
 // all posts info except for comments
 data: { posts: [{
 _id: String,
 title: String,
 ownerUserName: String,
 ownerId: String,
 thumbnail: { imageData: Buffer,
contentType:String},
 likes: Number,
 forks: Number,
 tags: [String],
 mapMetadata: String
 publishDate: Date
 }]
 }
 // no search results for request
 response: {
 status: 404
 data: {errorMessage: String}
 }
}

createPost(req, res) {
 method: POST
 route: /posts-api/posts
 response : {
 // properly formatted legal request
 status : 200,
 data : { postId: String}
 }
 response : {
 // improperly formatted request
 status : 400,
 data : { errorMessage : String }
 }
 response : {
 // for unauthorized request
 status : 401,
 data : { errorMessage : String }
 }
}

deletePost(req, res) {
 method: DELETE
 route: /posts-api/posts/:id
 response: {
 // for properly formatted legal request
 status : 200,
 data : { }
 }
 response : {
 // for improperly formatted request
 status : 400,
 data : { errorMessage : String }
 }
 response : {
 // for unauthorized request
 status : 401,
 data : { errorMessage : String }
 }
}

editPost(req, res) {
 method: PUT
 route: /posts-api/posts/:id
 response: {
 // for properly formatted legal request
 status : 200,
 data : {}
 }
 response : {
 // for improperly formatted request
 status : 400,
 data : { errorMessage : String }
 }
 response : {
 // for unauthorized request
 status : 401,
 data : { errorMessage : String }
 }
 response: {
 status: 404
 data: {errorMessage: String}
 }
}

updatePostLikes(req, res) {
 method: PUT
 route: /posts-api/posts/:id
 response: {
 // for properly formatted legal request
 status : 200,
 data : {}
 }
 response : {
 // for unauthorized request
 status : 401,
 data : { errorMessage : String }
 }
 response: {
 status: 404
 data: {errorMessage: String}
 }
}
commentOnPost(req, res) {
 method: PUT
 route: /posts-api/posts/:id
 response: {
 // for properly formatted legal request
 status : 200,
 data : {}
 }
 response : {
 // for improperly formatted request
 status : 400,
 data : { errorMessage : String }
 }
 response : {
 // for unauthorized request
 status : 401,
 data : { errorMessage : String }
 }
 response: {
 status: 404
 data: {errorMessage: String}
 }
}

editComment(req, res) {
 method: PUT
 route: /posts-api/posts/:id/edit-comment
 response: {
 // for properly formatted legal request
 status : 200,
 data : {}
 }
 response : {
 // for improperly formatted request
 status : 400,
 data : { errorMessage : String }
 }
 response : {
 // for unauthorized request
 status : 401,
 data : { errorMessage : String }
 }
 response: {
 status: 404
 data: {errorMessage: String}
 }
}

User

 userName: string;
 email: string;
 passwordHash: string;
 posts: Types.ObjectId[];
 mapsMetdadata: Types.ObjectId[];
 likedPosts: Types.ObjectId[];
 untitledCount: number;
 duplicateCount: number;
 isAdmin: boolean;
 timeOfLastPasswordResetRequest: Date;

NavBar

const { auth } = useContext(AuthContext);
const { store } = useContext(GlobalStoreContext);

// The menu's anchor element, i.e. where it will appear
const [anchorEl, setAnchorEl] = useState(null);

// Keeps track of if the menu is open or not
const isMenuOpen = Boolean(anchorEl);

// Responds to logotype or home button being pressed
const handleHome = () => {...

// Responds to click on avatar to open drop-down menu
const handleProfileMenuOpen = (event) => { ...

// Responds to click away from menu, which closes it
const handleMenuClose = () => { ...

// Responds to click on Create New Account menu item
const handleRegister = () => { ...

// Responds to click on Login menu item
const handleLogin = () => { ...

// Responds to click on Logout menu item
const handleLogout = () => { ...

// Responds to pressing Reset Password
const handleResetPassword = () => {...

// Responds to pressing My Maps
const handleMyMaps = () => {...

// Responds to pressing My Posts
const handleMyPosts = () => {...

GlobalStoreActionType
DELETE_MAP
DELETE_COMMENT
DELETE_POST
UPDATE_COMMENT
UPDATE_POST
LOAD_MAP
LOAD_MAP_CARDS
LOAD_POST
LOAD_ALL_POSTS
LOAD_MY_POSTS
CREATE_COMMENT
CREATE_POST

GlobalStoreContextProvider

const [store, setStore] = useState({

 currentModal : CurrentModal.NONE,
 mapCardsInfo: [],
 postCardsInfo: [],
 currentPostInfo: null,
 mapCardIndexMarkedForDeletion: null,
 mapCardMarkedForDeletion: null
 postCardIndexMarkedForDeletion: null,
 postCardMarkedForDeletion: null
 commentIndexMarkedForDeletion: null,
 commentMarkedForDeletion: null
});

const { auth } = useContext(AuthContext);
const tps : jsTPS;
const history = useHistory();

// Reducer function to update store state
const storeReducer = (action) => { ...

// Functions to call apis

// to delete a specific map
store.DeleteMap = function(mapId) {...}

// to delete a specific comment
store.DeleteComment = function(commentId) {...}

// to delete a specific post
store.DeletePost = function(postId) {...}

// to edit or update a comment's text
store.EditComment = function(commentId, newText) {...}

// to edit or update a post's content
store.EditPost = function(postId, newContent) {...}

// to load a specific map's details
store.LoadMap = function(mapId) {...}

// to load all maps associated with a user
store.LoadMapCards = function(userId) {...}

// to load a specific post's details
store.LoadPost = function(postId) {...}

// to load all available posts
store.LoadAllPosts = function(filterOptions) {...}

// to load all posts associated with a user
store.LoadMyPosts = function(userId) {...}

// to create a new comment with specified details
store.CreateComment = function(newCommentDetails) {...}

// to create a new post with specified details
store.CreatePost = function(newPostDetails) {...}

store.addEditFeaturePropertiesTransaction = function(newProperties,
oldProperties, featureIndex)

store.addCreateFeatureTransaction = function(newFeature, featureIndex)

store.addDeleteFeatureTransaction = function(feature, featureIndex)

...

GlobalStoreHttpRequestApi

searchPostsByTitle(username) {
 method: GET
 route : /posts-api/posts/search-title/:title
 body : {
 limit: Number | undefined
 }
}

searchPostsByTags(tags) {
 method: GET
 route : /posts-api/posts/search-tags
 body : {
 tags: [String]
 limit: Number | undefined
 }
}

getPostsOwnedByUser(userId, limit) {
 method: GET
 route : /posts-api/posts/user/:userId
 body : {
 limit: Number | undefined
 }
}

getPost(postId) {
 method: GET
 route : /posts-api/posts/:id
 body : { }
}

getMostRecentPosts(limit) {
 method: GET
 route : /posts-api/posts/most-recent
 body : { limit: Number | undefined}
}

getMostLikedPosts(limit) {
 method: GET
 route : /posts-api/posts/most-liked
 body : { limit: Number | undefined }
}

createPost(title, textContent, images) {
 method: POST
 route : /posts-api/posts
 body : { // images will be sent via FormData
object
 title: String,
 textContent: String
 }
}

editPost(title, textContent, images) {
 method: PUT
 route : /posts-api/posts/:id
 body : { // images will be sent via FormData
object
 title: String,
 textContent: String
 }
}

updatePostLikes(postId) {
 method: PUT
 route : /posts-api/posts/:id/likes
 body : { }
}
commentOnPost(postId) {
 method: PUT
 route : /posts-api/posts/:id/comment
 body : {
 comment: String
 }
}

editComment(postId, index, comment) {
 method: PUT
 route: /posts-api/posts/:id/edit-comment
 body: { index: Number, comment: String }
}

deletePost(postId) {
 method: DELETE
 route : /posts-api/posts/:id/delete
 body : { }
}

deleteComment(postId, index) {
 method: DELETE
 route: /posts-api/posts/:id/comment
 body: { index: Number }
}

MAPS

exportMap(mapId) {
 method: GET
 route: /maps-api/maps/:id/export
 body: { }
}

getMapMetadataOwnedByUser() {
 method: GET
 route: /maps-api/map-metadata/:userId
 body: { }
}

getPublicMapMetadataOwnedByUser() {
 method: GET
 route:
/maps-api/public-map-metadata/:userId
 body: { }
}

getMapData(mapId) {
 method: GET
 route: /maps-api/maps/:id
 body: { }
}

uploadMap(formData) {

 method: POST
 route: /maps-api/maps/upload
 body: {
 // contains zipFile blob and actual
extension type (.shp, .json, .kml)
 formData: FormData
 }
}

forkMap(mapId) {
 method: POST
 route: /maps-api/maps/:id/fork
 body: { }
}

publishMap(mapId) {
 method: POST
 route: /maps-api/maps/:id/publish
 body: { }
}

favoriteMap(mapId) {
 method: PUT
 route: /maps-api/maps/:id/favorite
 body: { }
}

renameMap(mapId, name) {
 method: PUT
 route: /maps-api/maps/:id/rename
 body: { }
}

updateMapPrivacy(mapId, privacyStatus) {
 method: PUT
 route: /maps-api/maps/:id/change-privacy
 body: {
 privacyStatus: String
 }
}

deleteMap(mapId) {
 method: DELETE
 route: /maps-api/maps/:id/rename
 body: { }
}

HomeScreen

const {store} = useContext(GlobalStoreContext);
const [search, setSearch] = useState("");

// Respond to clicking on create post button (only
available when logged in)
const handleCreateNewPost = () => {...

// Responds to clicking on Maps only button
const handleMapsOnly = () => {...

// Responds to Sort By being pressed
const handleSortByOpen = () => {...

// Responds to a sort being chosen
const handleSort = () => {...

// Responds to typing in the search bar
const handleSearchChange = () => {...

// Responds to pressing enter on search bar
const handleSearch = () => {...

CreateFeature_Transaction

store : GlobalStoreContext
index: Number
feature: Object

constructor(initStore, initIndex, initFeature)
doTransaction()
undoTransaction()

EditFeaturePropertiesTransaction

store : GlobalStoreContext
newProperties: Object
oldProperties: Object
featureIndex : Number

constructor(initStore, initIndex, initFeature)
doTransaction()
undoTransaction()

jsTPS

HomeWrapper

const { auth } = useContext(AuthContext);

DeleteFeature_Transaction

store : GlobalStoreContext
index: Number
feature: Object

constructor(initStore, initIndex, initFeature)
doTransaction()
undoTransaction()

PostCard

const { store } = useContext(GlobalStoreContext);
const [likes, setLikes] = useState(0)

//Responds to like button being pressed
const handleLike = () =>

//Responds to username bring pressed
const handleProfileClick = () => {...

//Responds to card being pressed
//Called when comment button clicked as well
const handleOpenPost = () =. {...

Comment

const { store } = useContext(GlobalStoreContext);
const [likes, setLikes] = useState(0);
const [editActive, setEditActive] = useState(false);
const [comment, setComment] = useState("");

// Responds to like button being pressed
const handleLike = () => {...

// Responds to edit button being pressed
const handleEdit = () => {...

// Responds to comment text being changed
const handleCommentChange = () => {...

// Responds to comment being submitted
const handleCommentSubmit = () => {...

// Responds to delete button (owner/admin)
const handleDelete = () => {...

//Responds to username being pressed
const handleProfileClick = () => {...

PostEditor

const { store } = useContext(GlobalStoreContext);
const [title, setTitle] = useState("");
const [body, setBody] = useState("");
const [attachments, setAttachments] = useState({});
const [tags, setTags] = useState({});
const [tagsSearch, setTagsSearch] = useState("");

// Responds to title text change
const handleTitleChange = () => {...

// Responds to body text change
const handleBodyChange = () => {...

// Responds to add attachment
const handleAddAttachment = () => {...

// Responds to delete attachment
const handleDeleteAttachment = () => {...

// Responds to add tag
const handleAddTag = () => {...

// Responds to delete tag
const handleDeleteTag = () => {...

// Responds to change in input for tags search
const handleSearchChange = () => {...

// Responds to submitting tags search
const handleSearchSubmit = () => {...

// Responds to post button being clicked
const handlePostSubmit = () => {...

Post

const { store } = useContext(GlobalStoreContext);
const [likes, setLikes] = useState(0)
const [comments, setComments] = useState({});
const [comment, setComment] = useState("");

// Responds to like button being pressed
const handleLike = () => {...

// Responds to comment text being changed
const handleCommentChange = () => {...

// Responds to comment text being submitted
const handleCommentSubmit = () => {...

// Responds to username being pressed
const handleProfileClick = () => {...

// Responds to export button
const handleExport = () => {...

// Responds to fork button
const handleFork = () => {...

// Responds to delete button (admin/owner)
const handleDelete () => {...

//Responds to edit button
const handleEdit = () => {...

MyMaps

const { store } = useContext(GlobalStoreContext);
const [maps, setMaps] = useState({});
const [search, setSearch] = useState("");
const [showModal, setShowModal] = useState(false);

// Responds to create map button
const handleCreateMap = () => {...

// Responds to search text being changed
const handleSearchChange = () => {...

// Responds to submitting maps search
const handleSearchSubmit = () => {...

// Respnds to sort criteria being selected
const handleSort = () => {...

MapCard

const { store } = useContext(GlobalStoreContext);
const [showOpts, setShowOpts] = useState(false);
const [editActive, setEditActive] = useState(false);
const [name, setName] = useState("");
const [showModal, setShowModal] = useState(false);

// Responds to delete
const handleDelete = () => {...

// Responds to rename text change
const handleRenameChange = () => {...

// Responds to submitting rename text
const handleRenameSubmit = () => {...

// Responds to fork
const handleFortk = () => {...

// Responds to publish
const handlePublish = () => {...

// Responds to export
const handleExport = () => {...

// Responds to opening the map (for editing)
const handleOpenMap = () => {...

// Responds to changing privacy
const handleTogglePrivacy = () => {...

MapsRouter
/maps-api

router.get('/maps/:id/export ', MapsController.exportMap)

router.get('/maps/map-metadata/:userId', auth.verify,
MapsController.getMapMetadataOwnedByUser)

router.get('/maps/public-map-metadata/:userId/',
MapsController.getPublicMapMetadataOwnedByUser)

router.get('/maps/:id', auth.verify, MapsController.getMapData)

router.post('/maps/upload', auth.verify, MapsController.uploadMap)
router.post('/maps/:id/fork ', auth.verify, MapsController.forkMap)
router.post('/maps/:id/publish', auth.verify, MapsController.publishMap)

router.put('/maps/:id/favorite', auth.verify, MapsController.favoriteMap)
router.put('/maps/:id/rename', auth.verify, MapsController.renameMap)
router.put('/maps/:id/change-privacy ', auth.verify,
MapsController.updateMapPrivacy)

router.delete('/maps/:id', auth.verify, MapsController.deleteMap)

MapsController

exportMap(req, res) {
 method: GET
 route: /maps-api/maps/:id/export
 response: {
 // for properly formatted legal request
 status : 200,
 data : { } // there's no data because we will send the
map data to the client as a zip file.
 }
 response : {
 // for unauthorized request
 status : 401,
 data : { errorMessage : String }
 }
 response: {
 status: 404
 data: {errorMessage: String}
 }
}
getMapMetadataOwnedByUser(req, res) {
 method: GET
 route: /maps-api/maps/map-metadata/:userId/
 response: {
 // for properly formatted legal request
 status : 200,
 data : { mapMetadata: [MapMetadata] }
 }
 response : {
 // for unauthorized request
 status : 401,
 data : { errorMessage : String }
 }
 response: {
 status: 404
 data: {errorMessage: String}
 }
}
getPublicMapMetadataOwnedByUser(req, res) {
 method: GET
 route: /maps-api/maps/public-map-metadata/:userId/
 response: {
 // for properly formatted legal request
 status : 200,
 data : { mapMetadata: [MapMetadata] }
 }
 response: {
 status: 404
 data: {errorMessage: String}
 }
}
getMapData(req, res) {
 method: GET
 route: /maps-api/maps/:id
 response: {
 // for properly formatted legal request
 status : 200,
 data : {mapMetadata: MapMetadata, mapData:
MapData}
 }
 response : {
 // for unauthorized request
 status : 401,
 data : { errorMessage : String }
 }
 response: {
 status: 404
 data: {errorMessage: String}
 }
}
uploadMap(req, res) {
 method: POST
 route: /maps-api/maps/upload
 response: {
 // for properly formatted legal request
 status : 200,
 data : { mapId: String }
 }
 response : {
 // for unauthorized request
 status : 401,
 data : { errorMessage : String }
 }
 response: {
 status: 404
 data: {errorMessage: String}
 }
}
forkMap(req, res) {
 method: POST
 route: /maps-api/maps/:id/fork
 response: {
 // for properly formatted legal request
 status : 200,
 data : {}
 }
 response : {
 // for unauthorized request
 status : 401,
 data : { errorMessage : String }
 }
 response: {
 status: 404
 data: {errorMessage: String}
 }
}
favoriteMap(req, res) {
 method: PUT
 route: /maps-api/maps/:id/favorite
 response: {
 // for properly formatted legal request
 status : 200,
 data : {}
 }
 response : {
 // for unauthorized request
 status : 401,
 data : { errorMessage : String }
 }
 response: {
 status: 404
 data: {errorMessage: String}
 }
}
publishMap(req, res) {
 method: PUT
 route: /maps-api/maps/:id/publish
 response: {
 // for properly formatted legal request
 status : 200,
 data : {}
 }
 response : {
 // for unauthorized request
 status : 401,
 data : { errorMessage : String }
 }
 response: {
 status: 404
 data: {errorMessage: String}
 }
}

updateMapPrivacy (req, res) {
 method: PUT
 route: /maps-api/maps/:id/change-privacy
 response: {
 // for properly formatted legal request
 status : 200,
 data : {}
 }
 response : {
 // for unauthorized request
 status : 401,
 data : { errorMessage : String }
 }
 response: {
 status: 404
 data: {errorMessage: String}
 }
}
deleteMap(req, res) {
 method: DELETE
 route: /maps-api/maps/:id/delete
 response: {
 // for properly formatted legal request
 status : 200,
 data : {}
 }
 response : {
 // for unauthorized request
 status : 401,
 data : { errorMessage : String }
 }
 response: {
 status: 404
 data: {errorMessage: String}
 }
}
renameMap(req, res) {
 method: PUT
 route: /maps-api/maps/:id/rename
 response: {
 // for properly formatted legal request
 status : 200,
 data : {}
 }
 response : {
 // for unauthorized request
 status : 401,
 data : { errorMessage : String }
 }
 response: {
 status: 404
 data: {errorMessage: String}
 }
}

MapMetadata

 title: string;
 owner: Types.ObjectId;
 thumbnail: Image;
 lastEdited: Date;
 ownerFavorited: boolean;
 forks: number;
 mapData: Types.ObjectId;
 isPrivated: boolean;

interface Image {
 imageData: Buffer,
 contentType: string,
}

MapData

 geoJSON: object;
 proprietaryJSON: {
 templateType: string;
 legend: {
 title: string | undefined;
 keyValueLabels: Array<{
 key: string;
 value: string;
 }>;
 };
 gradientData: {
 primaryColor: number;
 minScale: number;
 maxScale: number;
 sections: number;
 };
 };

MyPosts

const { store } = useContext(GlobalStoreContext);
const [search, setSearch] = useState("");

// Responds to typing in the search bar
const handleSearchChange = () => {...

// Responds to pressing enter on search bar
const handleSearch = () => {...

// Responds to tag being pressed
const handleToggleTag = () => {...

// Responds to a sort being chosen
const handleSort = () => {...

Alert Modal

const { store } = useContext(GlobalStoreContext);

// Responds to close button being pressed
const handleClose = () => {...

ResetForgotPasswordScreen

const { store } = useContext(GlobalStoreContext);
const [formData, setFormData] = useState({
 password: "",
 confirmPassword: "",
});
const [showError, setShowError] = useState(false);

// Responds to form change
const handleFormChange = () => {...

//Responds to form submit
const handleFormSubmit = () => {...

Confirm Modal

const { store } = useContext(GlobalStoreContext);

// Responds to close button being pressed
const handleClose = () => {...

// Responds to confirm button being pressed
const handleConfirm = () => {...

Import Modal

const { store } = useContext(GlobalStoreContext);
const { file, setFile } = useState({});

// Responds to close button being pressed
const handleClose = () => {...

// Responds to file being updated
const handleFileChange = () => {...

// Responds to import button being pressed
const handleImport = () => {...

MapEditor

const { store } = useContext(GlobalStoreContext);
const [mapData, setMapData] = useState(null);
const [currentTool, setCurrentTool] = useState(null);
const [legendTitle, setLegendTitle] = useState(null);
const [legendKV, setLegendKV] = useState([]);
const [currentColor, setCurrentColor] = useState(null)
const [minScale, setMinScale] = useState(0);
const [maxScale, setMaxScale] = useState(0);
const [sections, setSections] = useState(1);
// used for line tool, polygon tool
const [currentPoints, setCurrentPoints] = setState([]);

// Rsponds to undo button being pressed
const handleUndo = () => {...

// Responds to redo button being pressed
const handleRedo = () => {...

// Responds to label text being double clicked
const handleLabelEdit = () => {...

// Responds to label text being updated
const handleLabelChange = () => {...

//Responds to label text change submit
const handleLabelSubmit = () => {...

const handleSaveMap = () => {...

const handlePanButtonClick = () => {...

const handleColorButtonClick = () => {...

const handlePinButtonClick = () => {...

const handleGradientButtonClick = () => {...

const handleLineButtonClick = () => {...

const handlePolygonButtonClick = () => {...

const handleIconButtonClick = () => {...

const handleSetMin = () => {...
const handleSetMax = () => {...
const handleSetSections = () =>
const handleSetColor = () => {...
const handleSetLegendTitle = () => {...

const handleMapClick = () => {...

jsTPS_Transaction

http://PostsController.getPostsOwnedByLoggedInUser)
http://auth.verify,
http://PostsController.getPostsOwnedByLoggedInUser)
http://store.addFeaturePropertiesTransaction
http://store.addFeaturePropertiesTransaction
http://store.addFeaturePropertiesTransaction
http://store.addFeaturePropertiesTransaction
http://store.addDeleteFeatureTransaction
http://store.addDeleteFeatureTransaction
http://store.addFeaturePropertiesTransaction
http://store.addFeaturePropertiesTransaction
http://store.addFeaturePropertiesTransaction
http://MapsController.exportMap)

ServerClient
AuthActionType

GET_LOGGED_IN
LOGIN_USER
LOGOUT_USER
REGISTER_USER
RESET_PASSWORD

auth-request-api

getLoggedIn() {
 method: GET
 route: /auth/loggedIn
 data: { }
}

loginUser(email, password) {
 method: POST
 route: /auth/login
 data: {
 email : String,
 password : String
 }
}
logoutUser() {
 method: POST
 route: /auth/logout
 data: { }
}

registerUser(email,
 username,
 password,
 confirmPassword) {
 method: POST
 route: /auth/register
 data: {
 email : String,
 username : String,
 password : String,
 confirmPassword : String
 }
}

forgotPassword(email) {
 method: POST
 route: /auth/forgotPassword
 data: {
 email : String
 }
}eresetForgotPassword(confirmPa
 sword) {{
{
 smethod: POST
route ropute: /auth/resetForgotPassword
 data: {
 password : String,
 confirmPassword : String
 }
}

resetPassword(oldPassword
 newPassword,
 confirmPassword) {
 method: POST
 route: /auth/resetPassword
 data: {
 oldPassword : String,
 newPassword : String,
 confirmPassword : String
 }
}

AuthController

loggedIn(req, res) {
 method : GET
 route : /auth/loggedIn
 response : {
 // properly formatted request
 status: 200 (Ok)
 data : {
 loggedIn: (true or false)
 user: {
 firstName: String,
 lastName: String,
 email : String
 } or null)
 }
 }
 response:
 // improperly formatted request
 status: 400 (Bad Request)
 data : { errorMessage : String }
 }
}

login(req, res) {
 method : POST
 route : /auth/register
 response: {
 // user exists and login success
 status: 200 (Ok)
 cookie : set token
 data : {
 user: {
 email : String
 password: String
 }
 }
 }
 response {
 // improperly formatted request
 status: 400 (Bad Request)
 data : { errorMessage : String}
 }
 response {
 // properly formatted but incorrect credentials
 status: 401 (Unauthorized)
 data : { errorMessage : String }
 }
}

logout(req, res) {
 method : POST
 route : /auth/logout
 response : {
 status: 200 (Ok)
 cookie : set to expire
 }
}

register(req, res) {
 method : POST
 route : /auth/register
 response : {
 // new user successfully created
 status: 200 (Ok)
 data : {
 user: {
 email: String,
 username: String,
 password : String,
 confirmPassword: String,
 }
 }
 }
 response : {
 // improperly formatted request or bad data
 status: 400 (Bad Request)
 data : { errorMessage: String }
 }
}

requestForgotPasswordLink(req, res) {
 method: POST
 route: /auth/resetPassword
 response : {
 status: 200 (Ok)
 data : { email : String }
 }
 response : {
 //no account with provided email
 status: 400 (Bad Request)
 data : data : { errorMessage: String }
 }
}

resetForgotPassword(req, res) {
 method: POST
 route: /auth/resetForgotPassword
 response : {
 status: 200 (Ok)
 data : { }
 response : {
 //passwords do not match
 status: 400 (Bad Request)
 data : data : { errorMessage: String }
 }
}

resetPassword(req, res) {
 method: POST
 route: /auth/resetPassword
 response : {
 status: 200 (Ok)
 data : { }
 response : {
 //incorrect old password or new password and
confirm password does not match
 status: 400 (Bad Request)
 data : data : { errorMessage: String }
 }
}

HTTP Request

HTTP Response

UserSchema

 userName: string;
 email: string;
 passwordHash: string;
 posts: Types.ObjectId[];
 mapsMetdadata: Types.ObjectId[];
 likedPosts: Types.ObjectId[];
 untitledCount: number;
 duplicateCount: number;
 isAdmin: boolean;
 timeOfLastPasswordResetRequest: Date;

AuthRouter
/auth

// Handles ask if user logged in request
router.get('/loggedIn', AuthController.loggedIn)

// Handles existing user login requests
router.post('/login ', AuthController.login)

// Handles logout user requests
router.get('/logout', AuthController.logout)

// Handle's new user registration requests
router.post('/register', AuthController.register)

//Handles user requesting for reset password link
router.post('/requestForgotPasswordLink ',
AuthController.forgotPassword)

//Handles user resetting password via link
router.post('/resetForgotPassword',
AuthController.resetForgotPassword)

//Handles user resetting password via profile menu
router.post('/resetPassword ',
AuthController.resetPassword)

AppBanner

const { auth } = useContext(AuthContext);
const { store } = useContext(GlobalStoreContext);

// The menu's anchor element, i.e. where it will appear
const [anchorEl, setAnchorEl] = useState(null);

// Keeps track of if the menu is open (drawn) or not
const isMenuOpen = Boolean(anchorEl);

// Responds to click on avatar to open drop-down menu
const handleProfileMenuOpen = (event) => { ...

// Responds to click away from menu, which closes it
const handleMenuClose = () => { ...

// Responds to click on Create New Account menu item
const handleRegister = () => { ...

// Responds to click on Login menu item
const handleLogin = () => { ...

// Responds to click on Logout menu item
const handleLogout = () => { ...

RegisterScreen

const { auth } = useContext(AuthContext);

// Responds to button click to submit new account form
const handleSubmit = (event) => { ...

LoginScreen

const { auth } = useContext(AuthContext);

// Responds to button click to submit login form
const handleSubmit = (event) => { ...

AuthManager

// signs a token for logging in
signToken = (userId) => { ...

// used for logging a user in to verify a user
verifyRequest = (req, res, next) => { ...

// used for complete mediation, verifies a user
verifyUser = (req) => { ...

AuthContextProvider

const [auth, setAuth] = setState ({
 user: null,
 loggedIn: false
})

// React Router history to allow for page forwarding
const history = useHistory()

// Reducer function to update auth state
const authReducer = (action) => { ...

// Determines and returns if the user is logged in or not
auth.getLoggedIn = async () => { ...

// Logs in the user
auth.loginUser = async (userData) => { ...

// Logs out the user
auth.logoutUser = async () => ...

// Registers the user
auth.registerUser = async (userData) => ...

// Gets the logged-in user's initials
auth.getUserInitials = () => { ...

// Sends email to user to reset password
auth.sendPasswordReset = () => {...

// Resets user password via email link
auth.resetForgotPassword = () => {...

//Reset user password via profile menu
auth.resetPassword = () => {...

amdgpu.vm_update_mode=3

Login Modal

const { store } = useContext(GlobalStoreContext);
const [email, setEmail] = setState("")
const[password, setPassword] = setstate("")

// Responds to close button being pressed
const handleClose = () => {...

//Responds to forgot password button being pressed
const handleForgotPassword = () => {...

Forgot Password Modal

const { store } = useContext(GlobalStoreContext);
const [email, setEmail] = setState("")

// Responds to close button being pressed
const handleClose = () => {...

//Responds to email field being changed
const handleEmailChange = () => {...

//Responds to send button being pressed
const handleSend = () => {...

Register Modal

const { store } = useContext(GlobalStoreContext);
const [formData, setFormData] = useState({
 email: "",
 username: "",
 password: "",
 confirmPassword: "",
});

// Responds to close button being pressed
const handleClose = () => {...

// Responds to field data being changed
const handleFormChange = () => {...

//Responds to send button being pressed
const handleSend = () => {...

Reset Password Modal

const { store } = useContext(GlobalStoreContext);
const[formData, setFormData] = useState({
 oldPassword = "",
 newPassword = "",
 confirmPassword = ""
});

// Responds to close button being pressed
const handleClose = () => {...

// Responds to field data change
const handleFormChange = () => {...

//Responds to reset button being pressed
const handleReset = () => {...

Alert Modal

const { store } = useContext(GlobalStoreContext);

// Responds to close button being pressed
const handleClose = () => {...

http://AuthController.getLoggedIn)
http://AuthController.getLoggedIn)
http://AuthController.getLoggedIn)
http://AuthController.forgotPassword)
http://AuthController.resetPassword)
http://auth.getLoggedIn
http://auth.getLoggedIn
http://auth.loginUser
http://auth.loginUser
http://auth.loginUser
http://auth.loginUser
http://auth.logoutUser
http://auth.logoutUser
http://auth.logoutUser
http://auth.registerUser
http://auth.registerUser
http://auth.registerUser
http://auth.registerUser
http://auth.getUserInitials
http://auth.getUserInitials
http://auth.sendPasswordReset
http://auth.sendPasswordReset
http://auth.resetPassword
http://auth.resetPassword
http://auth.resetPassowrd
http://auth.resetPassowrd
http://auth.resetPassowrd
http://auth.resetPassowrd

Meeting Minutes
Date: 09/26/2023

Screens:
- Home Screen (View all discussions threads and public maps)
- Maps Screen (View all public maps only)
- Post Screen (View current post opened)
- Profile Screen (View account details and settings)
- My Maps Screen (View user owned maps)
- Edit Map Screen (Edit current map opened)

Actors:
- Guest
- Logged-In User
- Admin

When the user forgets a password, they should be prompted to enter their username and email.
The system will validate if these match any existing data. If not, an error message will be shown
to the user. Otherwise, a password reset email will be sent to the user

Avatar icon on top right will open a dropdown menu with the options “My Maps”, “Settings”, and
“Logout.” The user will have the option to change their profile icon to an image from their device.

Maps on My Maps Screen are sorted by recently viewed by default. We can also add the option
to sort alphabetically or by recently edited.

Publishing a map creates a new post with the current state of the map (JSON data). This way,
anyone who forks the map basically does an “automatic import” of that JSON data into their own
MyMaps.

A user can publish their map multiple times (possibly after making edits in between each
publish). This would create a new post each time they publish.

Options for search:
Post title,
Tag(s),
Users

We decided on having the search bar have 2 options. To either search by post title or tag(s)

11/1 - Build 1 Meeting Notes:

● Version Control: 2 Repositories:
○ cartistry (frontend)
○ cartistry-express (backend)

● Deployed Platforms:
○ AWS Amplify (frontend)

■ Try to set up custom domain?
○ Vercel (backend)

■ Serverless and free!!!
● CI/CD:

○ Github Actions: live logs and multi-container testing
○ Create ci.yml

● Cypress IO
○ Documentation: https://docs.cypress.io/guides/overview/why-cypress
○ Refer to E2E testing

● Jest and Supertest
○ Jest Documentation: https://jestjs.io/docs/configuration

● Monday:
○ Basic Schedule:

■ Build 2: All frontend screens and routes
■ Build 3: All basic auth (login, register, logout, etc.), My Maps screen

(CRUD operations) and loading posts (homescreen & view post screen)
■ Build 4: Posts (CRUD operations), sorting maps & posts, get most recent

post
■ Build 5: Comments (CRUD operations), Map transactions, & Map editing

templates
■ Build 6: Finishing touches

○ Make sure to add frontend and backend testing for each build and new feature
● TODO List:

○ Set up deployed platforms (Jonathan)
○ Set up Version control and CI/CD (Angelo)
○ Create frontend and backend tests (Aaron)
○ Set up Monday tasks (Jenny)

https://www.cypress.io/
https://docs.cypress.io/guides/overview/why-cypress
https://jestjs.io/
https://www.npmjs.com/package/supertest
https://jestjs.io/docs/configuration

11/15 - Build 3 Meeting Notes:
● TODO

○ Figure out how to setup backend and database for E2E testing for CI/CD
○ Fix reset password through forgot password
○ Fix bugs from progress check

■ Input fields should be the correct type
■ Add loading states
■ Guests should not be able to comment
■ Foolproof design for modal buttons
■ Renaming and edit post fields update

○ Sizing on map containers for post and edit map screen
○ Fix exit current post action
○ Add error and success messages for user feedback
○ Initial setup for sorting posts functionality
○ Make sure publish map works
○ Handle redirection on post card clicks
○ Handle redirection on map upload
○ Work on map and post contexts
○ Dropdowns should close when clicking away
○ Finish import modal

11/22 - Build 4 Meeting Notes
● TODO

○ Fix view post bugs
○ Fix edit post bugs
○ Foolproof create post button for guests
○ Update post card menu styling
○ Routing with mapid and postid params should work
○ Implement searching in home and my maps screens
○ Likes update on post screen
○ Comment input clears after submission
○ Maps only sort should work on home screen
○ Fix upload map bugs
○ Add isSubnitting to post, login, and register
○ Fix my posts screen view
○ Add thumbnails to postcard view
○ Add image uploads to edit post screen

11/29 - Build 5 Meeting Notes
● TODO

○ Add error handling to popup form
○ Finish profile screen
○ Make usernames clickable
○ Update time since posted
○ Undo and redo features
○ Add frontend tests for posts
○ Edit and delete comments
○ Add backend to ci/cd
○ Show comments from new commentList field
○ Fix loadmaps on my posts screen
○ Fix auth routing

12/6 - Build 6 Meeting Notes
● TODO

○ Add legend
○ Add sorting by tags
○ Post and comment timestamps fix
○ Fix image not showing
○ Fix saving for all map types
○ Fix undo/redo for all map types
○ Add color picker
○ Add Geoman controls
○ Foolproof Geoman tools
○ Folder restructure
○ Dynamic toolbox
○ Update handling icons for re renders

