
Design API structure 1

Design API structure
Status Chosen for development

Assign A Aaron Li

Figma

Completed Phases

1. Introduction
Spotify has support for searching songs based on specific criteria, however, these 
features are not available for customers to use. The listening customer is immediately 
affected by the inability to manually filter songs. This doc will provide the structure on 
handle api calls. This will include client authorization with Spotify’s API as well as 
reading and writing data. 

2. Glossary

Client secret key

A piece of information that is used to encrypt
and decrypt messages or data, and is kept
secret to ensure that only authorized
individuals can access the encrypted
information.

* This symbol means required

3. Problem
Need a method to store users’ secret key so that other users do not have access to 
it but we can still retrieve it for the user

Functions need to be organized into files/folders



Design API structure 2

5. Solutions

5.1 Solution 1
This solution uses Firebase to help store user information. Client ID and client secret 
can be stored using enviornment variables (see Appendex 6.2 for pros and cons). 
organizes api calls into two main files (see Appendix 6.1). One for authentication and 
the other for making calls to the Spotify API. Most of these functions have already been 
generated in a previous project which will be recycled to be used in this project. 
Functions will be separated into 2 files. One for handling authentication (see Appendix 
6.2) and one for handling Spotify API calls (see Appendix 6.2). Estimated 2-4 days to 
complete.

6. Appendix

6.1 Storing on Cloud
https://www.youtube.com/watch?v=Pk5xgifoLYI&ab_channel=SmallBatchDevs

6.2 Pros and Cons of Enviornment Variables

Pros Cons

Convenient and easy to manage, as
environment variables can be set and changed
outside of the application code.

Environment variables can be compromised if
the server or deployment environment is
compromised.

Compatible with a wide range of deployment
environments, including containers, virtual
machines, and serverless functions.

Environment variables may not provide
sufficient security for highly sensitive
information, such as cryptographic keys or
personal identifiable information.

Can be used with many programming
languages and frameworks, not just TypeScript
and JavaScript.

Environment variables can be difficult to
manage in complex or distributed
environments, as they may need to be
configured differently for each environment.

Can be encrypted or hashed to provide
additional security.

Environment variables can be hard to
troubleshoot if they are misconfigured or not set
correctly.

Often included as a standard feature in many
deployment tools and platforms.



Design API structure 3

6.2 Authentication Functions

Function Purpose

void login()
connect the user to our Spotify app to obtain
credentials and permissions

void logout() disconnect the user from Spotify

void exchangeToken(body)
retrieves access token using provided code from
authentication

void handleExchangeToken() stores token needed to get refresh token

void requestRefreshToken(body) retrieves new token

void handleRefreshToken() stores new token

boolean isLoggedIn() allows us to know if a user is connected

generateRandomString(length) generates a string to be used as state identifier

generateCodeVerifier(length)
generates a code verifer to be used to create a
code challenge

generateCodeChallenge(codeVerifier) generates a code challenge given a code verifier

base64URL(buffer) converts to base64url format

6.3 Spotify API Functions
For reference: https://developer.spotify.com/documentation/web-api/reference/#/

All calls will be made to endpoint: https://api.spotify.com/v1/

Function Purpose Scope(s) Parameters



Design API structure 4

Function Purpose Scope(s) Parameters

void getSongs(params,
callback, body)

retrieves song
recommendations

none needed

/recommendations
*seed_artists: String[] of
artist ids *seed_tracks:
String[] of track ids sum of
lengths of arrays above ≤ 5
limit: Int of max tracks
wanted following can have
max, min, or target •
acousticness 0≤ x ≤ 1 •
danceability 0≤ x ≤ 1 •
duration_ms • energy 0≤ x ≤
1 • instrumentalness 0≤ x ≤
1 • key 0≤ x ≤ 11 • liveness
0≤ x ≤ 1 • loudness 0≤ x ≤ 1
• mode 0≤ x ≤ 1 • popularity
0≤ x ≤ 100 • speechiness 0≤
x ≤ 1 • tempo 0≤ x ≤ 1 •
time_signature • valence 0≤
x ≤ 1

void search(params,
body)

search by
keyword

none needed

/search *q: String query
*type: String “artist” or
“track” limit: Int of max
tracks wanted

void
getUserPlaylists(params)

retrieves current
user’s playlists

playlist-read-
private, playlist-
read-collaborative

/me/playlists limit: Int of max
tracks wanted offset: Int of
offset playlist wanted

void addSong(id,
params, body)

adds song(s) to a
playlist

playlist-modify-
public, playlist-
modify-private

/playlists/{playlist_id}/tracks
*uris: String of comma
separated uris ≤ 100 OR in
body: *uris: JSON String[]
track uris

void removeSong(id,
params, body)

removes song(s)
from a playlist

playlist-modify-
public, playlist-
modify-private

/playlists/{playlist_id}/tracks
in body: *uris: Object[] of
String uri of track


