
Design Database structure 1

Design Database structure
Status Chosen for development

Assign A Aaron Li

Figma

Completed Phases

1. Introduction
Deciding how customer information will be stored can be tricky. There are many factors 
to consider such as scalability, structured or unstructured data, and query patterns. This 
doc will provide the structure for the database on storing data.

2. Glossary

Relational Database

A relational database is a type of database that organizes data into
tables, where each table consists of rows and columns. It uses a
structured approach to store and manage data, with relationships
established between tables using keys. This allows for efficient
retrieval, manipulation, and analysis of data through the use of SQL
(Structured Query Language) queries, providing a flexible and scalable
solution for data storage and retrieval in various applications.

Non-relational Database

A non-relational database, also known as a NoSQL (Not only SQL)
database, is a type of database that does not rely on the traditional
tabular structure of relational databases. Instead, it offers a flexible
data model that can store and retrieve unstructured or semi-structured
data. Non-relational databases are designed to handle large volumes
of data, and they often prioritize scalability, high performance, and
horizontal scaling across distributed systems. They are commonly
used in applications with rapidly changing data requirements, such as
big data analytics, real-time data streaming, and content management
systems.



Design Database structure 2

Time Series Database • Time series databases are specifically designed for handling time-
stamped data and optimizing storage and analysis of such data. They
excel at efficiently ingesting, storing, and querying data points
associated with timestamps. Time series databases are commonly
used in applications that involve monitoring, sensor data analysis,
financial data analysis, IoT devices, and any scenario where analyzing
trends and patterns over time is crucial.

ACID acronym

Atomicity ensures that a transaction is treated as a single, indivisible
unit of work. It means that either all the changes made within a
transaction are committed to the database, or none of them are. There
is no partial execution. Consistency ensures that a transaction brings
the database from one valid state to another. It enforces predefined
rules and constraints, ensuring that the data remains consistent
throughout the transaction. Isolation ensures that concurrent
transactions do not interfere with each other. Each transaction
operates in isolation from others, and the intermediate state of a
transaction is not visible to other transactions until it is committed.
Durability ensures that once a transaction is committed, its changes
are permanently saved and will survive any subsequent failures, such
as power outages or system crashes.

3. Problem
This solution should anticipate for all future features and functionalities

May need to consider incorporating multiple types of databases

4. Solutions

4.1 Relational Database
This solution uses relational database to remedy the problems. Looking at this 
application’s intended use, a rigid structure for data entries is feasible and appropriate. 
Because this is a small scaled project, there would be no immediate or forseeable need 
to scale horizontally. Because of these, by using this method, we are able to reap the 
additional security benefits. These include authorization and authorization checks as 
well as backup and recovery. 

Option 1: Microsoft SQL Server



Design Database structure 3

Pros ConsPros Cons

integration with Microsoft ecosystem costs for lisences can ramp up as application scales

scalable designed to run on Windows OS

high performance vendor lock-in

offers developer friendly tools scalability can be difficult at high volumes

analytics reports steep learning curve

robust security features

Option 2: Amazon RDS

Pros Cons

scalable vendo lock-in

automated backups limited control and customization to configurations

point-in-time backups limited performance

robust security features

high availability

fault tolerance

AWS ecosystem

managed service

Option 3: Oracle

Pros Cons

scalable costs for lisences can ramp up as application scales

various addiontal features steep learning curve

high availability vendor lock-in

robust security features
resource-intensive in terms of CPU, memory, and
storage requirements

disaster recovery support

high-performance transaction processing

4.2 Document Store



Design Database structure 4

This solution uses non-relational database, specifically the docuemnt store. This is 
because with frequent updates to the user’s listening activity, the data may change and 
thus need to be updated. This would result in more writes than reads which would be 
great because this method would be faster to write than to read. This mehtod provides a 
dynamic, future-proof solution for scalability. If there is a feature later on that requires 
the strucutre to be changed, it can be done with minimal effort. In addition, scaling 
horizontally is feasible. 

Option 1: Firebase

Pros Cons

real-time features cannot perform complex queries

can be integrated with other tools vendor lock-in

concise documentation can be very costly as your application scales

quick and easy integration and setup
authentication and authorization may not meet
desired requirements

authentication feature limitations on serverless functions

Google Analytics and Crashlytics for
additional insights

performance drops as you scale

horizontal scalability free plan only supports basic functions

Hosting capabilities

serverless functions

Option 2: mongoDB

Pros Cons

flexible data model by using BSON not ACID compliant

scalable horizontally limitations on data integrity

powerful querying capabilities complex queries may hinder performance

horizontal scalability may lead to duplicate data

high availability and fault tolerance
not able to utilize joins to pull data from different
collections efficiently

simple installation can lead to large consumption of memory

cloud integration



Design Database structure 5

Option 3: Amazon DynamoDB

Pros Cons

scalable horizontally can be costly as your application scales

high performance with high traffic limited query flexibility

high availability and durability
eventual consistency and not immediate
consistency for all replicas

flexible data model by key value store not ACID compliant

high performance read and write operations data size limitations at 400KB per item

efficient querying by automatically creating
and retaining indexes

vendor lock-in

multi-region replication to reduce latency for
users globally

integrated caching

integration with AWS ecosystem

4.3 Time Series
This solution incorporates a time series database with one of the previous methods. A 
time series database would be used to consistently store up to date information on 
users’ listening activity and data. This could be used for many potential features related 
to analysis on user’s past data such as end of the year review on a user’s listening 
experience similar to Spoify Wrapped. When needed, necessary data can be extracted 
from this time series database onto another one.

Option 1: InfluxDB

Pros Cons

flexible data model
high injestion rates will cause high resource
consumption

powerful query capbilities limited use case

scalable may contain bugs

high availibility

fault tolerance



Design Database structure 6

Pros Cons

ability to integrate other functionalities
within ecosystem

built-in time series functions

Option 2: OpenTSDB

Pros Cons

scalable difficult to get started

high performance for read and write relies on HBase for data storage and indexing

flexible data model
is a distributed database which is difficult for small
scalred applications to manage and maintain

integration with Hadeep ecosystem limited query capacilities

wide range of additional features
limited help and community online compared to
competitors

built-in times series functions

Option 3: Prometheus

Pros Cons

powerful metrics collections and querying not as scalable as other competitors

multi-dimensional data model to allow for
quick and efficient query

large datasets while require large resource
consumption

alert system lack of distributed query capabilities

PromQL for complex queries diffiuclt to achieve high availability

dynamic service discovery for integrations

various expoerters and integrations
available


